If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+120t-100=0
a = -4.9; b = 120; c = -100;
Δ = b2-4ac
Δ = 1202-4·(-4.9)·(-100)
Δ = 12440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12440}=\sqrt{4*3110}=\sqrt{4}*\sqrt{3110}=2\sqrt{3110}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-2\sqrt{3110}}{2*-4.9}=\frac{-120-2\sqrt{3110}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+2\sqrt{3110}}{2*-4.9}=\frac{-120+2\sqrt{3110}}{-9.8} $
| -4.905t^2+120t-100=0 | | 1-x=1.5-2x | | 1-x=1.5-2.5x | | 5x+0=3x+1 | | 10^(95)*7=19x | | 10^(95x)*7=2 | | 10(95)*7=2x | | 10^95x*7=2 | | 10^95*7=2x | | 276+x=300 | | -38-2b-b=4b+11 | | 7x-22=8x+4 | | 3-x=1.5+1.5x | | 280-2x=5(2x-4)-180 | | x-0.99x=11.5 | | 1x+8=7x+4 | | 7/x=770 | | 60+3(2x-4)+5(3x-6)=360 | | x-0.2x=65 | | 5+3(2x-4)=180 | | 600-2(6x+4)=5(6-8x) | | 180+5(2x-4)=200 | | 180+3x=2x-60 | | 320-2x=540-4x | | 18x+10=10x+58 | | 9(3^x)=0 | | 210+x=240-2x | | 12x+80=10x+140 | | 1/8n=45 | | x/5=5=20 | | -a+8=6 | | 9n+2=20 |